Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2,2-dimethylcyclopropanecarboxamide

Fan-Yong Yan* and Dong-Qing Liu

School of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China Correspondence e-mail: vfany@163.com

Received 8 September 2007; accepted 10 September 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.120; data-to-parameter ratio = 16.1.

In the title compound, $C_{23}H_{17}ClF_3NO_3$, the dihedral angle between the dihydroanthracene and cyclopropane ring systems is 58.5 (4)°. The amino H atom forms an intramolecular hydrogen bond to a carbonyl O atom of the dioxodihydroanthracene moiety. The crystal packing is further stabilized by an intermolecular C-H···F contact.

Related literature

For related literature, see: Liu et al. (2006); Punja (1981).

Experimental

Crystal data

 $C_{23}H_{17}ClF_3NO_3$ $M_r = 447.83$ Triclinic, $P\overline{1}$

a = 8.1270 (10) Å
b = 8.1518 (9) Å
c = 15.821 (2) Å

$\alpha = 79.518 \ (8)^{\circ}$	
$\beta = 88.256 \ (9)^{\circ}$	
$\gamma = 72.328 \ (8)^{\circ}$	
$V = 981.7 (2) \text{ Å}^3$	
Z = 2	

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\min} = 0.924, \ T_{\max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.120$ S = 1.014630 reflections 287 parameters 4630 independent reflections 3258 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2$	0.94 (3)	1.89 (2)	2.639 (2)	134.7 (18)
C5 - H5A \cdots F1^i	0.98	2.49	3.412 (3)	158

Symmetry code: (i) x + 1, y - 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

This work was supported by the National Natural Science Foundation of China (grant No. 20376059)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2502).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Liu, D.-Q., Feng, Y.-Q., Liu, D.-W. & Zhang, S.-S. (2006). Acta Cryst. E62, o1747-o1748.
- Punja, N. (1981). Eur. Patent EP 0 031 199.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$

 $0.26 \times 0.24 \times 0.10$ mm

7669 measured reflections

T = 113 (2) K

Acta Cryst. (2007). E63, o4201 [doi:10.1107/S160053680704408X]

(*E*)-3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-*N*-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2,2-dimethylcyclopropanecarboxamide

F.-Y. Yan and D.-Q. Liu

Comment

3-((E)-2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl cyclopropanecarboxylic acid is a very important intermediate for tefluthrin, an important insecticide controlling a wide range of soil insect pests in maize, sugar beet, and other crops (Punja, 1981). The title compound may have some insecticide activity. The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of the title compound.

The dihedral angles between the dihydroanthracen moiety and the cycloprapane groug is $58.5 (4)^{\circ}$. The fluoro in CF₃ and methyl hydrogen in another molecule are linked by an intermolecular C—H···F hydrogen bond. The carbonyl atom O2 forms an intramolecular hydrogen bond to atom N1.

Experimental

The title compound was prepared according to the method of Liu *et al.* (2006). 3-((E)-2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropanecarboxylic acid 0.97 g (4.0 mmol) was dispersed in SOCl₂(15 ml), and a drop of anhydrous DMF was added. The mixture was heated to reflux for 4 h. SOCl₂ was removed by rotoevaporation. The crude the product could be directly disolved in anhydrous toluene, mixed with aminopyridine (0.90 g,4.1 mmol). Then, triethylamine was dropped into the solution. After 12 h stirring at room temperature, the reaction mixture was poured into hexane. The red precipitate was filtrated off and recrystallized from acetone and a small amount of water (50:1) over 3 d at ambient temperature.

Refinement

H atoms were positioned geometrically with C—H = 0.93-0.98 Å and refined using riding model with $U_{iso}(H) = 1.2Ueq(C)$. The amino H atom of was located in a difference map and freely refined.

Figures

Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius.

Fig. 2. The crystal packing of the title compound, viewed along *a* axis. The C—H…F contact is shown as a dashed line.

(E)-3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-N-(9,10-dioxo-9,10- dihydroanthracen-1-yl)-2,2-dimethylcyclopropanecarboxamide

Crystal data	
C ₂₃ H ₁₇ ClF ₃ NO ₃	Z = 2
$M_r = 447.83$	$F_{000} = 460$
Triclinic, PT	$D_{\rm x} = 1.515 {\rm ~Mg} {\rm m}^{-3}$
<i>a</i> = 8.1270 (10) Å	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
b = 8.1518 (9) Å	Cell parameters from 2347 reflections
c = 15.821 (2) Å	$\theta = 2.6 - 27.9^{\circ}$
$\alpha = 79.518 \ (8)^{\circ}$	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 88.256 \ (9)^{\circ}$	T = 113 (2) K
$\gamma = 72.328 \ (8)^{\circ}$	Platelet, yellow
V = 981.7 (2) Å ³	$0.26 \times 0.24 \times 0.10 \text{ mm}$
Data collection	
Rigaku Saturn diffractometer	3258 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.034$
Monochromator: confocal	$\theta_{\rm max} = 27.9^{\circ}$
T = 113(2) K	$\theta_{\min} = 2.6^{\circ}$
ω scans	$h = -10 \rightarrow 10$

 $=-10 \rightarrow 10$ h Absorption correction: multi-scan $k = -10 \rightarrow 10$ $l = -20 \rightarrow 17$ Standard reflections: ? 4630 independent reflections

Refinement

(Jacobson, 1998)

 $T_{\min} = 0.924, T_{\max} = 0.975$

7669 measured reflections

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0616P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
4630 reflections	$\Delta\rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
287 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
Defense of the location of the interval	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.15058 (7)	0.51727 (7)	0.13945 (4)	0.03385 (16)
F1	-0.10806 (19)	0.87745 (17)	0.10610 (8)	0.0423 (4)
F2	0.12094 (18)	0.81308 (18)	0.03437 (10)	0.0489 (4)
F3	-0.1147 (2)	0.79087 (17)	-0.01174 (8)	0.0429 (4)
O1	0.4957 (2)	0.4919 (2)	0.20203 (8)	0.0300 (4)
O2	0.67461 (17)	0.07963 (17)	0.47055 (8)	0.0214 (3)
O3	0.8801 (2)	0.52026 (19)	0.62598 (9)	0.0310 (4)
N1	0.5423 (2)	0.3304 (2)	0.33821 (10)	0.0196 (3)
C1	0.4817 (2)	0.3672 (3)	0.25405 (11)	0.0199 (4)
C2	0.3993 (2)	0.2382 (2)	0.23394 (11)	0.0184 (4)
H2	0.3866	0.1502	0.2846	0.022*
C3	0.4193 (3)	0.1739 (3)	0.14854 (11)	0.0210 (4)
C4	0.2483 (2)	0.2995 (2)	0.16698 (11)	0.0180 (4)
H4	0.1536	0.2452	0.1816	0.022*
C5	0.5315 (3)	0.2333 (3)	0.07951 (12)	0.0289 (5)
H5A	0.6506	0.1558	0.0889	0.043*
H5B	0.5288	0.3534	0.0818	0.043*
H5C	0.4882	0.2293	0.0230	0.043*
C6	0.4225 (3)	-0.0144 (3)	0.15474 (13)	0.0291 (5)
H6A	0.5402	-0.0918	0.1694	0.044*
H6B	0.3853	-0.0310	0.0994	0.044*
H6C	0.3441	-0.0423	0.1995	0.044*
C7	0.1912 (2)	0.4809 (2)	0.12117 (11)	0.0178 (4)
H7	0.2787	0.5321	0.1006	0.021*
C8	0.0293 (2)	0.5801 (3)	0.10575 (11)	0.0187 (4)
C9	-0.0175 (3)	0.7647 (3)	0.05808 (12)	0.0211 (4)
C10	0.6061 (2)	0.4383 (3)	0.37939 (11)	0.0186 (4)

C11	0.5739 (3)	0.6158 (3)	0.34485 (12)	0.0229 (4)
H11	0.5138	0.6631	0.2911	0.027*
C12	0.6285 (3)	0.7231 (3)	0.38801 (13)	0.0242 (4)
H12	0.6057	0.8435	0.3637	0.029*
C13	0.7166 (3)	0.6567 (3)	0.46663 (12)	0.0232 (4)
H13	0.7531	0.7317	0.4961	0.028*
C14	0.7510 (2)	0.4816 (2)	0.50191 (12)	0.0181 (4)
C15	0.8468 (2)	0.4175 (3)	0.58665 (12)	0.0207 (4)
C16	0.9029 (2)	0.2269 (3)	0.61968 (11)	0.0187 (4)
C17	1.0105 (3)	0.1594 (3)	0.69284 (12)	0.0229 (4)
H17	1.0448	0.2362	0.7221	0.027*
C18	1.0673 (3)	-0.0194 (3)	0.72283 (12)	0.0248 (4)
H18	1.1417	-0.0652	0.7723	0.030*
C19	1.0158 (3)	-0.1321 (3)	0.68083 (11)	0.0217 (4)
H19	1.0564	-0.2549	0.7011	0.026*
C20	0.9051 (2)	-0.0654 (3)	0.60921 (11)	0.0192 (4)
H20	0.8673	-0.1424	0.5817	0.023*
C21	0.8494 (2)	0.1138 (2)	0.57768 (11)	0.0170 (4)
C22	0.7344 (2)	0.1811 (2)	0.49952 (11)	0.0166 (4)
C23	0.6969 (2)	0.3674 (2)	0.45955 (11)	0.0178 (4)
H1	0.543 (3)	0.224 (3)	0.3731 (14)	0.033 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
C11	0.0159 (2)	0.0332 (3)	0.0444 (3)	-0.0065 (2)	-0.0019 (2)	0.0122 (2)
F1	0.0587 (10)	0.0220 (7)	0.0316 (7)	0.0105 (7)	0.0018 (6)	-0.0075 (6)
F2	0.0305 (8)	0.0247 (7)	0.0816 (10)	-0.0090 (6)	0.0053 (7)	0.0159 (7)
F3	0.0691 (11)	0.0251 (7)	0.0297 (6)	-0.0104 (7)	-0.0262 (7)	0.0051 (6)
01	0.0368 (9)	0.0360 (9)	0.0218 (7)	-0.0221 (8)	-0.0028 (6)	0.0030 (7)
O2	0.0242 (7)	0.0145 (7)	0.0259 (7)	-0.0061 (6)	-0.0047 (5)	-0.0034 (6)
O3	0.0389 (9)	0.0224 (8)	0.0351 (8)	-0.0101 (7)	-0.0090 (7)	-0.0108 (7)
N1	0.0218 (8)	0.0160 (8)	0.0198 (8)	-0.0049 (7)	-0.0036 (6)	-0.0014 (7)
C1	0.0154 (9)	0.0233 (11)	0.0198 (9)	-0.0047 (8)	-0.0012 (7)	-0.0026 (8)
C2	0.0183 (9)	0.0181 (10)	0.0164 (8)	-0.0042 (8)	-0.0022 (7)	0.0010 (8)
C3	0.0205 (10)	0.0178 (10)	0.0197 (9)	0.0019 (8)	-0.0038 (7)	-0.0032 (8)
C4	0.0151 (9)	0.0149 (10)	0.0210 (8)	-0.0016 (8)	-0.0033 (7)	-0.0003 (8)
C5	0.0228 (11)	0.0300 (12)	0.0256 (10)	0.0041 (9)	0.0036 (8)	-0.0050 (10)
C6	0.0365 (12)	0.0161 (11)	0.0287 (10)	0.0012 (9)	-0.0059 (9)	-0.0039 (9)
C7	0.0166 (9)	0.0180 (10)	0.0192 (8)	-0.0054 (8)	0.0017 (7)	-0.0043 (8)
C8	0.0184 (9)	0.0207 (10)	0.0168 (8)	-0.0067 (8)	0.0007 (7)	-0.0017 (8)
C9	0.0221 (10)	0.0178 (10)	0.0218 (9)	-0.0026 (8)	-0.0012 (7)	-0.0051 (8)
C10	0.0174 (9)	0.0171 (10)	0.0220 (9)	-0.0057 (8)	0.0027 (7)	-0.0045 (8)
C11	0.0232 (10)	0.0187 (10)	0.0238 (9)	-0.0034 (8)	-0.0006 (8)	-0.0012 (8)
C12	0.0284 (11)	0.0129 (10)	0.0288 (10)	-0.0049 (9)	0.0031 (8)	-0.0003 (8)
C13	0.0264 (11)	0.0184 (10)	0.0275 (10)	-0.0091 (9)	0.0018 (8)	-0.0072 (9)
C14	0.0182 (9)	0.0156 (10)	0.0213 (9)	-0.0054 (8)	0.0024 (7)	-0.0051 (8)
C15	0.0201 (10)	0.0194 (10)	0.0245 (9)	-0.0070 (8)	0.0014 (7)	-0.0075 (8)

C16	0.0179 (9)	0.0192 (10)	0.0193 (9)	-0.0050 (8)	0.0010(7)	-0.0055 (8)
C17	0.0241 (10)	0.0247 (11)	0.0209 (9)	-0.0075 (9)	-0.0025 (8)	-0.0062 (9)
C18	0.0246 (10)	0.0275 (12)	0.0183 (9)	-0.0041 (9)	-0.0039 (7)	0.0004 (9)
C19	0.0220 (10)	0.0190 (10)	0.0204 (9)	-0.0027 (8)	0.0023 (7)	-0.0004 (8)
C20	0.0199 (9)	0.0174 (10)	0.0198 (9)	-0.0050 (8)	0.0026 (7)	-0.0032 (8)
C21	0.0150 (9)	0.0172 (10)	0.0179 (8)	-0.0036 (8)	0.0028 (7)	-0.0036 (8)
C22	0.0172 (9)	0.0152 (10)	0.0183 (8)	-0.0050 (8)	0.0022 (7)	-0.0052 (8)
C23	0.0161 (9)	0.0165 (10)	0.0205 (9)	-0.0042 (8)	0.0019 (7)	-0.0043 (8)
Geometric para	meters (Å, °)					
Cl1—C8		1.7295 (19)	С7—	-H7	0.9	500
F1—C9		1.331 (2)	C8—	-C9	1.49	95 (3)
F2—C9		1.324 (2)	C10-	C11	1.39	98 (3)
F3—C9		1.325 (2)	C10-	C23	1.42	21 (2)
O1—C1		1.218 (2)	C11-	C12	1.3	78 (2)
O2—C22		1.2353 (19)	C11-	-H11	0.93	500
O3—C15		1.224 (2)	C12-	C13	1.38	38 (3)
N1—C1		1.382 (2)	C12-	-H12	0.93	500
N1-C10		1.405 (2)	C13-	C14	1.3	79 (3)
N1—H1		0.94 (3)	C13-	-H13	0.9	500
C1—C2		1.489 (2)	C14-	C23	1.4	16 (2)
С2—С3		1.523 (2)	C14-	C15	1.49	96 (3)
C2—C4		1.547 (2)	C15-	C16	1.47	78 (3)
С2—Н2		1.0000	C16-	C17	1.39	94 (2)
C3—C5		1.508 (3)	C16-	C21	1.40	02 (2)
C3—C6		1.512 (3)	C17-	C18	1.38	34 (3)
C3—C4		1.512 (3)	C17-	-H17	0.93	500
C4—C7		1.463 (3)	C18-	C19	1.39	90 (3)
C4—H4		1.0000	C18-	-H18	0.93	500
С5—Н5А		0.9800	C19-	C20	1.38	39 (2)
С5—Н5В		0.9800	C19-	-H19	0.93	500
С5—Н5С		0.9800	C20-	C21	1.39	91 (3)
С6—Н6А		0.9800	C20-	-H20	0.93	500
C6—H6B		0.9800	C21-	C22	1.48	39 (2)
С6—Н6С		0.9800	C22-	C23	1.47	76 (3)
С7—С8		1.321 (3)				
C1—N1—C10		126.38 (17)	F2—	С9—С8	111	.90 (16)
C1—N1—H1		119.3 (12)	F3—	С9—С8	112	.83 (14)
C10—N1—H1		114.3 (12)	F1—	С9—С8	111	.76 (16)
O1-C1-N1		123.11 (16)	C11-		120	.95 (17)
O1—C1—C2		123.92 (15)	C11-	C10C23	119	.70 (16)
N1—C1—C2		112.97 (17)	N1—	-C10—C23	119	.27 (17)
C1—C2—C3		123.23 (16)	C12-	C11C10	120	.66 (17)
C1—C2—C4		119.42 (16)	C12-		119	.7
C3—C2—C4		58.98 (11)	C10-		119	.7
С1—С2—Н2		114.6	C11-	C13	120	.57 (18)
С3—С2—Н2		114.6	C11-	—С12—Н12	119	.7
С4—С2—Н2		114.6	C13-	—С12—Н12	119	.7

C5—C3—C6	114.14 (17)	C14—C13—C12	119.96 (16)
C5—C3—C4	119.85 (17)	C14—C13—H13	120.0
C6—C3—C4	115.70 (17)	С12—С13—Н13	120.0
C5—C3—C2	121.19 (16)	C13—C14—C23	121.12 (16)
C6—C3—C2	114.75 (16)	C13—C14—C15	117.53 (15)
C4—C3—C2	61.29 (12)	C23—C14—C15	121.34 (17)
C7—C4—C3	121.31 (16)	O3—C15—C16	121.59 (17)
C7—C4—C2	120.40 (14)	O3—C15—C14	120.61 (18)
C3—C4—C2	59.72 (12)	C16—C15—C14	117.78 (14)
C7—C4—H4	114.8	C17—C16—C21	119.91 (18)
C3—C4—H4	114.8	C17—C16—C15	119.68 (16)
С2—С4—Н4	114.8	C21—C16—C15	120.41 (16)
С3—С5—Н5А	109.5	C18—C17—C16	120.01 (16)
С3—С5—Н5В	109.5	C18—C17—H17	120.0
H5A—C5—H5B	109.5	С16—С17—Н17	120.0
С3—С5—Н5С	109.5	C17—C18—C19	120.22 (17)
H5A—C5—H5C	109.5	C17—C18—H18	119.9
H5B—C5—H5C	109.5	C19—C18—H18	119.9
С3—С6—Н6А	109.5	C20—C19—C18	120.09 (19)
С3—С6—Н6В	109.5	С20—С19—Н19	120.0
Н6А—С6—Н6В	109.5	C18—C19—H19	120.0
С3—С6—Н6С	109.5	C19—C20—C21	120.19 (16)
Н6А—С6—Н6С	109.5	С19—С20—Н20	119.9
H6B—C6—H6C	109.5	С21—С20—Н20	119.9
C8—C7—C4	126.07 (17)	C20-C21-C16	119.56 (16)
С8—С7—Н7	117.0	C20-C21-C22	119.03 (15)
С4—С7—Н7	117.0	C16—C21—C22	121.41 (17)
С7—С8—С9	122.53 (17)	O2—C22—C23	122.63 (16)
C7—C8—Cl1	125.14 (16)	O2—C22—C21	119.02 (16)
C9—C8—Cl1	112.31 (14)	C23—C22—C21	118.35 (14)
F2—C9—F3	107.74 (17)	C14—C23—C10	117.99 (17)
F2—C9—F1	106.43 (15)	C14—C23—C22	119.72 (16)
F3—C9—F1	105.76 (16)	C10—C23—C22	122.29 (15)
C10-N1-C1-O1	8.9 (3)	C12—C13—C14—C15	179.79 (18)
C10—N1—C1—C2	-171.50 (18)	C13—C14—C15—O3	5.9 (3)
O1—C1—C2—C3	37.9 (3)	C23—C14—C15—O3	-173.82 (19)
N1—C1—C2—C3	-141.67 (18)	C13-C14-C15-C16	-172.65 (18)
O1—C1—C2—C4	-32.4 (3)	C23-C14-C15-C16	7.6 (3)
N1—C1—C2—C4	148.07 (17)	O3—C15—C16—C17	-6.4 (3)
C1—C2—C3—C5	2.4 (3)	C14—C15—C16—C17	172.18 (17)
C4—C2—C3—C5	109.4 (2)	O3-C15-C16-C21	173.94 (19)
C1—C2—C3—C6	146.10 (19)	C14—C15—C16—C21	-7.5 (3)
C4—C2—C3—C6	-106.97 (19)	C21—C16—C17—C18	1.4 (3)
C1—C2—C3—C4	-106.9 (2)	C15-C16-C17-C18	-178.27 (18)
C5—C3—C4—C7	-2.2 (2)	C16—C17—C18—C19	-0.8 (3)
C6—C3—C4—C7	-145.25 (16)	C17—C18—C19—C20	-0.9 (3)
C2—C3—C4—C7	109.31 (17)	C18—C19—C20—C21	1.9 (3)
C5—C3—C4—C2	-111.49 (18)	C19—C20—C21—C16	-1.3 (3)
C6—C3—C4—C2	105.44 (18)	C19—C20—C21—C22	178.45 (17)

C1—C2—C4—C7	2.5 (3)	C17—C16—C21—C20		-0.4 (3)
C3—C2—C4—C7	-110.8 (2)	C15—C16—C21—C20		179.28 (17)
C1—C2—C4—C3	113.3 (2)	C17—C16—C21—C22		179.90 (17)
C3—C4—C7—C8	152.17 (17)	C15—C16—C21—C22		-0.4 (3)
C2—C4—C7—C8	-136.94 (19)	C20—C21—C22—O2		8.5 (3)
C4—C7—C8—C9	-179.86 (16)	C16—C21—C22—O2		-171.75 (18)
C4—C7—C8—Cl1	1.9 (3)	C20—C21—C22—C23		-171.26 (17)
C7—C8—C9—F2	0.0 (2)	C16—C21—C22—C23		8.5 (3)
Cl1—C8—C9—F2	178.45 (13)	C13—C14—C23—C10		0.1 (3)
C7—C8—C9—F3	121.71 (19)	C15—C14—C23—C10		179.84 (16)
Cl1—C8—C9—F3	-59.84 (19)	C13—C14—C23—C22		-179.41 (17)
C7—C8—C9—F1	-119.26 (19)	C15—C14—C23—C22		0.3 (3)
Cl1—C8—C9—F1	59.20 (17)	C11—C10—C23—C14		0.3 (3)
C1-N1-C10-C11	16.6 (3)	N1-C10-C23-C14		-176.43 (17)
C1—N1—C10—C23	-166.71 (18)	C11—C10—C23—C22		179.80 (18)
N1-C10-C11-C12	176.31 (18)	N1-C10-C23-C22		3.1 (3)
C23-C10-C11-C12	-0.4 (3)	O2—C22—C23—C14		171.94 (18)
C10-C11-C12-C13	0.0 (3)	C21—C22—C23—C14		-8.3 (3)
C11-C12-C13-C14	0.4 (3)	O2—C22—C23—C10		-7.5 (3)
C12-C13-C14-C23	-0.5 (3)	C21—C22—C23—C10		172.25 (16)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A

D - H - A	D - H	H···A	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1—H1…O2	0.94 (3)	1.89 (2)	2.639 (2)	134.7 (18)
C5—H5A…F1 ⁱ	0.98	2.49	3.412 (3)	158
Symmetry codes: (i) $x+1$, $y-1$, z .				

